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Abstract. We find the eigenfunctions of the Peres spin-zero lightcone energy–momentum
operators. These are compared with the usual Klein–Gordon basis states. A continuity equation
is found with a positive definite probability density.

1. Lightcone quantum mechanics

In the usual relativistic quantum mechanics we consider the wavefunctionψ(x, t) over
constant-time hyperplanest = t1, t = t2, . . . , and givenψ(x, t) the evolution equation
enables us to calculateψ(x, t + δt). Dirac [2] long ago suggested an alternative quantum
mechanics in which the wavefunctionψ(r, T ) is taken over past lightconesT = T1, T =
T2, . . . centred on an inertial world line. Herer are the lightcone (retarded) coordinates.
The new evolution equation is i dψ(r, T )/dT = Ĥ ψ(r, T ), which enables us to calculate
the wavefunction on a later past lightcone givenψ(r, T ).

One reason for investigating an alternative spin-zero relativistic quantum mechanics is
the known problems with the Klein–Gordon theory, in particular that the usual probability
density is indefinite (even for positive energy solutions), and that the obvious position
operatorx is not Hermitian with respect to the usual inner product [3]. Here we will
find a positive-definite probability density, and also the position operatorr is Hermitian
with respect to the inner product (2.1). Additional advantages of the lightcone formalism
are: (i) Lorentz transformations are easier to describe in that a past lightcone is mapped
onto itself, (ii) retarded particle interactions are natural to the lightcone formalism, (iii) the
projection postulate is more plausible in the case of the past lightcone wavefunction [4].
On the other hand the lightcone energy–momentum operators contain non-local (integral)
operators.

Peres [1] found a set of spin-zero Poincaré group operators acting on the past lightcone.
We will present his energy–momentum operators in a more tractable form, and find their
eigenfunctions. We also find a continuity equation resulting from the Hamiltonian.

The question naturally arises as to whether we are simply performing a coordinate
transformation, in which case no new physics arises. We will compare the time-dependant
wavefunctions of definite momentum found here with the corresponding Klein–Gordon
wavefunctions, and discuss their differences. The author of this paper has co-authored a
previous paper [5] in which a past lightcone quantum mechanics was considered, the theory
therein suffers from the same defects as the Klein–Gordon theory—in particular an indefinite
probability density.

The past lightcone with vertex at the origin is parametrized by the null 4-vector
rλ ≡ (−r, r), with r the retarded position coordinate. The Lorentz generators map the
past lightcone onto itself, and defining the classical Lorentz generators by

K ≡ (J 10, J 20, J 30) = r π J ≡ (J 23, J 31, J 12) = r × π (1.1)
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whereπ is the conjugate momentum (such that the Poisson bracket{ra , πb} = δab ), we
can check that

{J λµ, rν} = ηµνrλ − ηλνrµ . (1.2)

where the metric tensorηµν is diagonal withη00 = −η11 = −η22 = −η33 = 1. Any other
vector satisfying the relation equivalent to (1.2) we define to be a 4-vector, i.e. covariant
under Lorentz transformations.

Next we consider the lightcone energy–momentum generators for a single free particle
of massm, which are [1, 2, 6]

H ≡ P 0 = 1

2
r
π2 +m2

r · π
P = π − 1

2
r

π2 +m2

r · π
= π − r̂ P 0 . (1.3)

It may be verified thatP 02 = m2 + P 2. The reason for the more complicated form of the
lightcone momentum generators (1.3) is that a space translated past lightcone in general
meets the particle at a different point on its world line, so that there is an additional
convection term due to particle motion. Thus the Poisson bracket relation betweenP andr
is

{Pλ , rµ} = ηλµ − rλP µ

r · P (1.4)

as may be verified. The relation (1.4) arises in the theory of retarded potentials, see for
example equations (40.10)–(40.11) in [7]. Altogether the generators (1.1), (1.3) satisfy the
Poisson bracket relations characteristic of the Poincaré group.

Note that the HamiltonianP 0 of (1.3) is not obviously positive-definite, but depends on
the sign of ther · π term in the denominator. From equation (1.3) we can verify that

r · π = rP 0 + r · P = r
√
m2 + P 2 + r · P . (1.5)

So if P 0 = +√
m2 + P 2, then from the Schwarz inequality it follows thatr · π > 0

for a massive particle, similarly ifP 0 = −√
m2 + P 2 then r · π < 0. In the classical

(non-quantized) case we always take the positive square root in which caser · π is
positive. When in the next section we quantize thePλ generators to form the corresponding
operatorspλ, the operator identityp02 = m2 + p2 holds, but the operatorp0 can also have
negative eigenvalues, i.e. there are negative energy solutions. This implies that the operator
corresponding tor · π can also have negative eigenvalues.

2. Quantization

We require the operatorsjλµ, pν corresponding to the classical generatorsJ λµ, P ν to be
symmetric with respect toHr , which is the Lorentz-invariant positive-definite scalar product
space over the past lightcone

Hr :

〈
φ

∣∣∣∣1

r

∣∣∣∣ψ〉
≡

∫
φ∗(r)

1

r
ψ(r) d3r . (2.1)

The expectation value of any operatorO is then 〈ψ |(1/r)|Oψ〉 with 〈ψ |(1/r)|ψ〉 = 1.
Note that the position operator, multipication byr, is evidently symmetric inHr . Also the
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operatorsjλµ, pν must obey the Poincaré group commutation relations. We will find the
eigenfunctions of thepλ operators and check their orthogonality relations.

The Lorentz generators (1.1) are readily quantized [1, 6]:

j ≡ (j23, j31, j12) = −ir × ∇ k ≡ (j10, j20, j30) = −ir∇. (2.2)

We tentatively identify the operator corresponding tor·π as the dilation operator−i∂rr ≡ 6.

The left and right inverse of6 is 6−1, defined [5] as

6−1f (y, θ, φ) = i

y

∫ y

0
f (y ′, θ, φ) dy ′ equivalently 6−1f (r) = i

∫ 1

0
f (αr) dα.

(2.3)

The operators6 ,6−1 are Lorentz invariant, i.e. commute withjλµ. The generatorsPλ of
(1.1) may be writtenPλ = (Aλ − 1

2m
2rλ)/(r · π) where [8]

Aλ ≡ (A0 , A) = ( 1
2rπ

2 , π(r · π)− 1
2rπ2 ) (2.4)

is the 4-vector version of the Runge–Lenz vector. The corresponding operators [8] are

aλ ≡ (a0 , a) = (− 1
2r∇2 , −i6∇ + 1

2r∇2 ) (2.5)

which are symmetric inHr . Theseaλ have the following properties:

[aλ , aµ] = 0 (2.6)

[aλ , rµ] = i6ηλµ + ijλµ (2.7)

aλ · aλ = 0 rλ · aλ = −(6 + i)2 aλ · rλ = −(6 − i)2 (2.8)

(aλrµ − aµrλ) = −(6 − i)jλµ = −
(

1

r
6r

)
jλµ (2.9)

(rλaµ − rµaλ) = (6 + i)jλµ =
(
r6

1

r

)
jλµ . (2.10)

It is interesting to note that the operators(aλ + rλ/2), (aλ − rλ/2), jλµ,6 together form a
realization of the O(4, 2) algebra [8].

There are a number of ways of ordering the operators withinpλ, corresponding to the
classical generatorsPλ (1.3), but the requirements that [pλ , pµ] = 0, and that thepλ are
symmetric inHr , lead to the choice

pλ = 1√
r
6−1√r aλ − 1

4
m2(rλ6−1 +6−1rλ) (2.11)

so that the evolution equation is

i
dψ

dT
= p0ψ =

[
−1

2

(
1√
r
6−1√r

)
r∇2 + 1

4
m2(r6−1 +6−1r)

]
ψ . (2.12)

The ten operators (2.2) and (2.11) are equivalent to those found by Peres [1]. In the case
of the energy–momentum operators the equivalence is non-trivial and will be demonstrated
in appendix C.
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To prove the required commutation relations
[
pλ , pµ

] = 0 appears a formidable task,
but computations are greatly eased using the fact that6 or6−1 commute with any operator
O homogeneous of degree zero (i.e. such thatO(αr) = O(r)). Then operators such as√
r aλ (homogeneous of degree− 1

2) may be reordered with6−1 as follows:

6−1√r aλ = 6−1(
√
r aλ

√
r)

1√
r

= √
r aλ

√
r6−1 1√

r
. (2.13)

Then with equations (2.9) and (2.10) we can prove
[
pλ , pµ

] = 0, which will be shown in
appendix A.

Our approach to quantizating thePλ generators has been formal in the sense that we
have been led by the requirements that thepλ operators are (i) symmetric inHr , and (ii)
commute with each other. Recently two papers [9, 10] have suggested that quantization of
thePλ generators must be carried out under the constraintr · π > 0. However, as we have
noted at the end of section 1r · π is only positive whenP 0 = +√

m2 + P 2, but negative
whenP 0 = −√

m2 + P 2. In the next section we will see that there are indeed negative
energy solutions.

2.1. The continuity equation

It follows from the Hamiltonian (2.12) that we can derive a continuity equation in the form

∂

∂T
ρ + ∇ · J = 0 (2.14)

where

ρ = ψ∗ 1

r
ψ (2.15)

J = 1

2

(
−iψ∗∇√

r6−1 1√
r
ψ + 1

2
r̂(6−1√r∇ψ∗ ·6−1√r∇ψ +m26−1ψ∗6−1rψ)

)
+ CC

(2.16)

whereCC stands for the complex conjugate terms. The proof we leave to appendix B.

3. The energy–momentum eigenfunctions

Call the eigenvalues of thepλ energy–momentum operatorskλ ≡ (k0,k), with k0 ≡√
m2 + k2. We expect eigenfunctions of these operators to be functions of the positive-

definite Lorentz scalarζ ≡ −kλrλ = k0r + k · r. We will show that

φk(r) = [
(1 + iζ )J0(ζ/2)− ζJ1(ζ/2)

]
ei ζ/2 (3.1)

are the required eigenfunctions.φk(r) satisfies

ζφ′′ + (1 − iζ )φ′ − 3
2iφ = 0 (3.2)

(φ′ denoting differentiation ofφ with respect to the argument) as may be verified directly. So
φ is a confluent hypergeometric function with imaginary argument, i.e.φ ≡ 1F1(

3
2, 1, i ζ ).

Equation (3.2) may be written

i6φ′ + 1√
ζ
6

√
ζφ = 0 (3.3)
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as6 ≡ −i∂rr = −i∂ζ ζ. From equation (3.3) it follows that

φ′ = i6−1 1√
r
6

√
rφ = i

1√
r
6

√
r6−1φ . (3.4)

To show thatp0φ = k0φ we first need

a0φ ≡ − 1
2r∇2φ = − 1

2r ∇ · [(k0r̂ + k)φ′]

= −k0φ′ − 1
2r(k

02 + 2k0r̂ · k + k2)φ′′

= −k0(φ′ + ζφ′′)+ 1
2m

2rφ′′

= k0

(
1√
r
6

√
rφ

)
− 1

2
m2

(
r

ζ

) (
φ′ + 1√

r
6

√
rφ

)
(3.5)

using equation (3.2). Then

p0 φ ≡
(

1√
r
6−1√r

)
a0φ + 1

4
m2(r6−1 +6−1r) φ

= k0φ − 1

2
m2

(
r

ζ

)[
1√
r
6−1√rφ′ + φ

]
+ 1

4
m2(r6−1 +6−1r) φ

= k0φ − 1

2
m2

(
r

ζ

)[
i6−1φ + φ

]
+ 1

4
m2(r6−1 +6−1r) φ (3.6)

where we have used equation (3.4). Them2 terms in (3.6) may be shown to cancel with
the aid of the following identities:

6−1φ = [
iJ0(ζ/2)− J1(ζ/2)

]
ei ζ/2 (3.7)

6−1rφ = r

[
iJ0(ζ/2)−

(
1 + 2i

ζ

)
J1(ζ/2)

]
ei ζ/2 . (3.8)

So finallyp0φ = k0φ.

Next considerpφ:

pφ =
[
−i

(
1√
r
6−1√r

)
6∇ − r̂p0

]
φ

= −i

(
1√
r
6−1√r

)
6(r̂k0 + k)φ′ − r̂k0φ

= −i

(
1√
r
6−1√r

)
6(r̂k0 + k)

(
i

1√
ζ
6

√
ζ6−1φ

)
− r̂k0φ = kφ (3.10)

where we have used equation (3.4).
The functionφk(r) was found by Derrick [6] who considered a variety of basis states

orthogonal inHr , (see his equation (B8) therein). Derrick showed that〈
φk

∣∣∣∣1

r

∣∣∣∣φk′

〉
= (25π2)k0δ(k − k′) . (3.11)
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3.1. Comparison with the Klein–Gordon wavefunctions

Consider the time-dependant wavefunctionψ(r, T ) of momentumk, which is

ψ(r, T ) = e−ik0T φk(r) ≡ e−ik0T+iζ/2
[
J0(ζ/2 + iζJ0(ζ/2)− ζJ1(ζ/2)

]
(3.12)

with ζ ≡ k0r + k · r. The first term falls off rapidly away from the origin, and omitting
this term for the far field

ψ(r, T ) ' iζe−ik0T+iζ/2
[
J0(ζ/2)+ iJ1(ζ/2)

]
→ 2i

√
ζ

π
e−iπ/4 e−ik0T+iζ as ζ → ∞ . (3.13)

The exponential e−ik0T+iζ ≡ e−ik0T+ik0r+ik·r, and after performing the coordinate
transformationT − r = t , r = x, is equivalent to the Klein–Gordon eigenstate e−ik0t+ik·x.
The

√
ζ factor in (3.13) is partly accounted for by the fact that our probability density

is ((1/r)ψ∗ψ); however, this still leaves the angular variable
√
ζ/r as a factor, i.e. the

asymptotic lightcone wavefunctionφk(r) is of greater amplitude in the directionk than
in the direction−k, in contrast to the Klein–Gordon case. The classical motion of a free
particle in lightcone coordinates is also asymmetric about the origin, in that the apparent
velocity of the particle when approaching the origin is greater than when it is receding.

3.2. Negative energy solutions

We note thatp0 is a purely imaginary operator. This means thatp0φ∗
k = −k0φ∗

k. Thus the
general solution of the evolution equation (2.12), including the positive and negative energy
solutionsψ(+) andψ(−), is

ψ = ψ(+) + ψ(−) ≡
∫

e−ik0T α(k) φk(r) d3k +
∫

eik0T β(k) φ∗
k(r) d3k (3.14)

with k0 = √
m2 + k2, andα(k), β(k) being arbitrary functions ofk.

4. Conclusion and outlook

It appears that the spin-zero lightcone quantum mechanics considered here has some
advantages, particularly a positive-definite probability density, and a Hermitian position
operatorr. The basis states are not simply a coordinate transformation from the Klein–
Gordon basis states. We have not extended the theory to include interaction terms here; we
hope to address this elsewhere.

Appendix A. On the commutator [pλ , pµ]

The commutator [pλ , pµ] containsm4, m2, and massless terms. Them4 terms in the
commutator are readily shown to be zero using the fact thatr̂ commutes with6−1. Similarly
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the massless terms are zero using equation (2.6). Them2 terms of the commutator [pλ , pµ]
are

− m2

4

[
(

1√
r
6−1√r)

(
aλrµ − aµrλ

)
1

r
(r6−1 +6−1r)

+ (r6−1 +6−1r)
1

r
(rλaµ − rµaλ)

(√
r6−1 1√

r

)]
. (A.1)

Then inserting the identities (2.9) and (2.10), which are

(aλrµ − aµrλ) = −
(

1

r
6r

)
jλµ (rλaµ − rµaλ) =

(
r6

1

r

)
jλµ

and noting that

(r6−1 +6−1r) = 6−1(r6 +6r)6−1

= 26−1(
√
r6

√
r)6−1 (A.2)

then equation (A.1) becomes

− m2

2

[
−

(
1√
r
6−1√r

)(
1

r
6r

)
jλµ

1

r
(6−1√r6√

r6−1)

+ (6−1√r6√
r6−1)

1

r

(
r6

1

r

)
jλµ

(√
r6−1 1√

r

)]

= − m2

2

[ − jλµ 6−1 + jλµ 6−1
] = 0 . (A.3)

Appendix B. On the continuity equation (2.14)

We calculate∇ · J using the identity∇ · (r̂ u v) = (i/r)u(6v) + (i/r)v(6u) for any
functionsu, v. In what followsCC stands for complex conjugate terms:

2
(∇ · J

) ≡ ∇ ·
(

−iψ∗ ∇√
r6−1 1√

r
ψ + m2

2
r̂(6−1√r∇ψ∗ · 6−1√r∇ψ)

+6−1ψ∗6−1rψ

)
+ CC

= − i∇ψ∗ · ∇√
r6−1 1√

r
ψ − iψ∗ · ∇2√r6−1 1√

r
ψ

+ m2

2

[(
i√
r
∇ψ∗

)
· 6−1√r∇ψ +6−1√r∇ψ∗ ·

(
i√
r
∇ψ

)

+ i

r
ψ∗6−1rψ + 6−1ψ∗ i

r
rψ

]
+ CC
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= − iψ∗ ∇2√r6−1 1√
r
ψ − i∇2√r6−1 1√

r
ψ∗ψ

+ m2

2

[
i

r
ψ∗6−1rψ +6−1ψ∗ i

r
rψ +6−1rψ∗ i

r
ψ + i

r
rψ∗6−1ψ

]

= −2ψ∗ 1

r

∂

∂T
ψ − 2

(
1

r

∂

∂T
ψ∗

)
ψ = −2

∂

∂T
ρ (B.1)

as required.

Appendix C. The Peres spin-zero operators [1]

The spin-zero Peres Hamiltonian, correcting a misprint in equation (28) from [1], is

H = 1

2

(
p + m2

p + 1
4(rpr)

−1
+ J2 + 1

4

rpr

)
(C.1)

where Peres’p in our notation isp ≡ (1/
√
r)6(1/

√
r). Then equation (C.1) is

p0 = 1

2

(
1√
r
6

1√
r

+ m2[
1√
r
6 1√

r
+ 1

4
1√
r
6−1 1√

r

] + 1√
r
6−1 1√

r

(
J2 + 1

4

))

= 1

2

([
1√
r
6

1√
r

+ 1

4

1√
r
6−1 1√

r

]
+m2

[
1√
r
6

1√
r

+ 1

4

1√
r
6−1 1√

r

]−1

+ 1√
r
6−1 1√

r
J2

)
. (C.2)

The operator in square brackets is invertible noting that(
6

1√
r

)
6−1

(
1√
r
6

)
=

(
1√
r
6 + i

2
√
r

)
6−1

(
6

1√
r

− i

2
√
r

)
=

[
1√
r
6

1√
r

+ 1

4

1√
r
6−1 1√

r

]
(C.3)

implying that [
1√
r
6

1√
r

+ 1

4

1√
r
6−1 1√

r

]−1

= 6−1√r6√
r6−1 . (C.4)

So equation (C.2) is

p0 = 1

2

(
6

1√
r
6−1 1√

r
6 +m26−1√r6√

r6−1 + 1√
r
6−1 1√

r
J2

)
= 1

2

(
1√
r
6−1√r6 1

r
6 + m2

2
(r6−1 +6−1r)+ 1√

r
6−1 1√

r
J2

)
(C.5)

recalling (A.2). Then substitutingJ2 = −r2∇2 − r6(1/r)6 we see that equation (C.5) is
equivalent to thep0 of (2.12).
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